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Abstract. The three-dimensional S = I axial next-nearest-neighbour king (ANNNI) model is 
discussed. In addition to the ferromagnetic i n h  and interlayer interactions Jo and Jj two 
I y p  of competing antiferromagnetic interactions are considered between next-nearest layers. 
i.e. ordinary two-site two-spin JzStS,+2 (12-21 model) or three-site four-spin JQ,S;+jSj+2 (13- 
41 model) interactions. For both models, the magnetic phase diagrams are obtained by means of 
Ihe site-dependent molecular field approximation. The phase boundaries among paramagnetic, 
ferromagnetic and various modulated phases are determined by analysing frequency-dependent 
susceptibility ~ ( q ) ,  or by solving coupled equations of (S , )  and (S!) for spins up to 17, 
iteratively. The constructed 'devil's flower' of the [MI model is characteristically different 
from that of the 12-21 model, since three-site four-spin interaction is effectively temperature- 
dependent. For the [ 3 4 ]  model, a new behaviour of re-enuant transition is found for the 
interaction tali0 -0.50 > A / J L  > -0.53. The role of the entropy term for this re-entrant 
m i t i o n  is discussed in detail by analysing the free energies around the multiphase point 
(T = 0, 53/51 = -0.5). 

1. Introduction 

The systems with competing interactions represent the various types of phase hansition 
and ordered states, and have attracted many investigators. The axial next-nearest-neighbour 
king (ANNNI) model is one of several very attractive systems. This model was originally 
introduced to describe the spatially modulated phases which can be either commensurate or 
incommensurate with the underlying lattice [I ,  21. The theoretical studies [3-81 performed 
for the three-dimensional S = 4 system have revealed interesting properties such as 'the 
devil's flower and staircase'. The spin quantum number dependence of the ANNNI model 
remains an interesting problem. 

Although A " N l  models seem to be too simple to describe specific materials 
quantitatively, they reproduce crucial quantitative features observed experimentally in 
adsorbate systems, ferroelectrics, magnetic systems, alloys and so on which exhibit 
modulated structures [9]. On the other hand, the ordinary A " N I  model does not explain 
the existence of zero magnetization layers (partially disordered phase) observed in CeSb 121 
and PIco$3i2 [IO]. 

In the case of S > 1, it is known that the higher-order spin interactions, S;Sf, SiSfSk and 
so on, become important as well as the ordinary bilinear exchange interaction, S;Sj [ I  1,121. 
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These interactions strongly affect the phase transition, and the Blume-Emery-Griffiths (BEG) 
model [I31 and the Blum&apel model 1141 are well known as typical systems. Although 
the ordinary ANNNI model has not fully succeeded in explaining the partially disordered 
phase, it may be possible to explain the experimental results by introducing the higher- 
order spin interactions. 

In a previous paper [151. based on the transfer matrix method and Monte Carlo 
simulation, we have discussed the ground state and the order-disorder transition for two 
types of the three-dimensional S = 1 MI model, described by the following Hamiltonian: 

where Si = & I  or 0, JO > 0 is a ferromagnetic nearest-neighbour interaction within the x y  
plane, and J I  > 0 and Jz(3) c 0 are competing interactions between nearest and next-nearest 
(or three adjacent) layers perpendicular to the z-direction, respectively (figure 1). 

2 

T 

- JO - 
Figure 1. The three-dimensional ANNNI model. 

For both models, the ground state has been rigorously obtained by means of the transfer 
matrix method, and proved to change from ferromagnetic to antiphase spin structure at 
K ~ O )  = J ~ ( ~ ) / J I  = -$ with the increase of competition. This result is in agreement with 
that of the ordinary S = !j A N " l  model [4]. 

From magnetization, internal energy, specific heat and 'absolute magnetization' 
calculated by the Monte Carlo simulation with Fourier transformation, phase boundaries 
among the paramagnetic, the ferromagnetic and the modulated phases were determined with 
the location of the Lifshia point (LP). In the vicinity of the paramagnetic phase Wansition, 
the correlation along the z-direction becomes considerably weaker than the correlation in 
the x y  plane owing to the frustration along the z-direction. It was concluded that for both 
[2-21 and [ 3 4 ]  models there exists a temperature region in which the system behaves as 
a quasi-two-dimensional system, while for the [ 3 4 ]  model the self-spin correlation, 
included in the three-& four-spin interaction, somewhat weakens the frustration between 
J ,  and 53 at high temperatures. 

It was difficult to use the Monte Carlo algorithm to probe the detailed structures of 
the modulated phases, due to the impossibility of choosing a lattice size and boundary 
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condition along the axial direction which do not affect the periodicity of the modulation. 
The modulated structures, therefore, remain as an interesting problem to be studied. In 
this paper, by means of the site-dependent molecular field calculation, the details of the 
modulated spin structures are investigated. The phase diagram for the [3-4] model shows 
that there exists the re-entrant phase transition for -0.53 < ~1 < -0.50. This re-entrant 
phase transition is discussed by analytically calculating and comparing the free energies of 
the ferromagnetic, modulated and antiphase states in the vicinity of the multiphase point. 

In section 2, based on the site- 
dependent molecular field approximation, the thermal averages, free energy and the transition 
temperatures are derived. In section 3, by means of numerical calculation, the phase 
diagrams for [2-21 and [3-4] models are obtained. In section 4, the cause of the re- 
entrant phase transition is discussed. Finally, in section 5 the results are summarized and 
concluding remarks given. 

The arrangement of the paper is as follows. 

2. The site-dependent molecular field approximation 

We consider the three-dimensional S = 1 ANNNI model described by the following 
Hamiltonian: 

where Jij denotes Jo, J ,  or Jz  in figure 1, and Ji jk  denotes the three-site four-spin interaction 
53 along the z-axis. For 53 = 0 or J2 = 0, this Hamiltonian corresponds to the [2-21 or [3- 
41 model, respectively. In terms of thermal averages (S,) and (Si’). Si and Si’ are expressed 
as 

Neglecting higher orders of fluctuation for Si and S;, the Hamiltonian in the molecular field 
approximation is obtained as follows: 

HMF = - c ( S j h j  + S;h; - f(Sj)hj - (S,?)hf) 
j 

where 

From equations (6), (7) and (8), the thermal averages of Si and Sf, 

2exp(@h;) sinh(@h,) 
(”) = 1 + 2exp(ghj*)cosh(@hj) 

2exp(@h7) cosh(@hj) 
(’f) 1 + Zexp(ph7) cosh(phj) 
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and free energy per spin, 

1 
-TIog[2exp(gh~)cosh(bhj) t 11 t -(Sj)hj+ 2 (S,?)hJ] (11) 

are obtained, where 6 = 1/T. The Boltzmann constant is taken to be unity. 
In the paramagnetic state, the induced (S,) and (S;) under the site-dependent external 

field Hj are calculated from equations (9) and (lo), and are given by neglecting higher 
orders of h,, h; and Hj as follows: 

where a = S ( S t  1)/3 = f for S = 1, and g h d  f i g  denote the g-factor and Bohr magneton, 
respectively. 

Now, we introduce the Fourier components of (Si) and the sitedependent external field 
Hj I 

Equations (12)-(15) give 

(16) 
a 

(Sq) = T [ ( J ( q )  +a.f(q))(Sq) - ~ P B H ~ ]  

where J ( q )  and j ( q )  denote the Fourier components of the two-site two-spin type interaction 
and the three-site four-spin type interaction, respectively, described by 

From equation (16), the wavevector-dependent susceptibility x(q )  = -NgpB(Sq)/HP is 
given by 

where 
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From equations (17) and (18), equation (21) is written as 

T(q) =aI2Jo(cosqx + c o s ~ ~ ) + ~ J I C O S ~ ~  $ ~ J z c o s ~ ~ ,  + 2 a J , ~ 0 ~ 2 q , ]  (22) 

where the lattice constant is taken to be unity. With the decrease of temperature from 
the paramagnetic state, the ordered state corresponding to the critical wavevector qc, for 
which equation (22) becomes maximal, appears at the beginning. For the fixed value of 
KO = J o / J I  > 0 and K = KZ + a ~ 3  c 0, we calculate the critical wavevector qc(q:, q;. 4;). 
In the case of -4  c K < 0, qi = q; = 4: =, 0 (the ferromagnetic phase or F-phase) and in 
the case of K c -4, q: = q; = 0 and 4; = COS-'(-~K) (the modulated phase or M-phase) 
are obtained. If T ( q J  for each case is symbolized by Tc and T,,, respectively, then we get 

The LP, at which the P-, F- and M-phases coexist, is given by 

The Lifshitz temperature T* is common for both models, but this is not the case for K ;  

and K;. For the 12-21 model ( ~ 3  = 0), the ratio of the competing interactions at the LP 
is K; = -a and is not concerned with the spin value S. For the [MI model (KZ = 0), 
however, K; is proportional to a a S(Sf1) and has the smaller value of K; = -: compared 
with K; = - 4  of the [2-21 model in the present case of S = 1. This shift of the LP is due 
to the self-spin correlation (S,?) included in the three-site four-spin interaction. For both the 
[2-21 and [34] models, TC, T,, and LP are shown in table 1. 

Table 1. T,, T, and LP for the S = 1 ANNNI model by means of the molecular field approxhation, 
where KO = J o / h  and a = S(S+ 1)/3 = :. 

-. . ..., . 

3. The numerical calculation 

From equations (23) and (24), the phase boundary between the paramagnetic phase (P- 
phase) and the ordered phase (F- or M-phase) has been obtained. In the " N I  model, as 
the intralayer interactions Jo are ferromagnetic, the x- and y-components of the wavevector 
are always zero, corresponding to the ferromagnetic order in the layer. Therefore, the 
ordered state is characterized by the z-component qr.  In the following qJ2n is defined as 
q .  To investigate the ordered phase, the coupled equations of equations (9) and (10) for 
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spins up to N = 17 are self-consistently solved by means of the iteration. The stable spin 
structure is determined as the solution which minimizes the free energy given by equation 
(1 1). In the case of N < 17, the spin shuc!ures corresponding to q = 0 and & < q < f 
should be considered. For higher values of N .  complex structures with longer periodicities 
appear in the phase diagrams. These structures, however, are unstable except within an 
extremely narrow temperature region in the phase diagram. It is believed that no additional 
significant insight can be achieved by extending the numerical calculation to such higher 
values of N [5 ] .  Due to the small lattices ( N  S_ 17) and the periodic boundary condition, 
however, only commensurate phases can be identified, and the systematics of the high- 
order commensurate phases are missed. To make up for these defects, it is necessary to do 
more sophisticated analyses of the mean-field equations, in particular following Selke and 
Duxbury [16]. 

The dependences of the critical wavevector qc on K Z ( ~ )  for two models are shown in 
figure 2. The change of the wavevector with temperature is larger in the [ 3 4 ]  model than 
in the [2-21 model. As K Z ( ~ )  + -CO, qc approaches the 4 antiphase (A-phase) in both 
models. 

- K Z W  

of N + M (gc = cos-q-fw)). 

Figure 2. R e  dependence af the critical wavevector qc on ~ 2 0 )  for lhe K2-21 and [?-4] models. 
The full lines denote Ihe numerical calculation for N < 17. The broken lines denote the c m  

The T-K magnetic phase diagrams for the [2-21 and [3-4] models are shown in 
figures 3 and 4, respectively. For both models, an infinite number of phases degenerate 
at the multiphase point, (K~o),  T )  = (-4.0). Figure 3 is similar to the magnetic phase 
diagram for the S = 6 three-dimensional ANNNI model [5 ] .  On the other hand, figure 4 
shows that the ferromagnetic phase is extended into the modulated phase region, and for 
-0.53 < ~3 < -0.5 the reentrant phase transition (M -+ F + M) takes place for the 13-41 
model. In previous work, the Monte Carlo simulation for KS = -0.52 cannot find such a 
re-entrant phase transition [15]. This fact suggests that the region of the re-entrant phase 
transition might be more narrow. It is difficult but necessary to carry out the Monte Carlo 
simulation for such a critical region of -0.52 < ~3 < -0.5. 

Comparing the phase diagram for the r3-41 model (figure 4) with that of the [2-21 
model (figure 3), the P-F and M-F phase transitions in I 3 4 1  model take place on the 
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I I I 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

- I C 2  

Fwre 3. The magnetic phase diagram for the [22] model. 

' t  

2 I - 3  

W 
U 

2 2  
2 
W 
Q 
2 1  
W 
I- 

- K 3  

Figure 4. The magnetic phase diagram for lhe [MI model. 

higher-temperature side and the P-M and M-A phase transitions take place on the lower- 
temperature side compared with the [2-21 model. This result is qualitatively in agreement 
with that of the Monte Carlo simulation [151, and is explained by the self-spin correlation Sf 
included in the three-site four-spin interaction, J&SfSk. For the [3-4] model, the effective 
field, hj ,  (equation (7)) includes the self-spin correlation, (Sf). As the temperature is raised, 
(Sj) decreases monotonously from I to 3 and the threesite four-spin interaction, J&@, 
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is weakened by the factor (Sj) compared with the bilinear interaction, JzSjSj .  Namely, as 
the temperature is raised, the frustration in the I341 model becomes weaker than that in 
the [Z-21 model. Therefore, the F-phase for the [3-4] model becomes stable in the higher- 
temperature region than that for the [2-21 model, and the P-F and M-F phase transitions 
take place on the higher-temperature side. For the same reason, the A- or M-phases for 
the [ 3 4 ]  model become unstable in the lower-temperature region than those for the [2-21 
model, and the P-M and M-A phase transitions take place on the lower-temperature side. 
The extension of the ferromagnetic phase into the modulated phase region in the [ 3 4 ]  
model is also attributed to self-spin correlation. This causes the re-entrant phase transition, 
which is analytically investigated in the next section. 

4. The re-entrant phase transition in the [U] model 

In the [ 3 4 ]  model, the weakening of the three-site four-spin interaction stabilizes the 
ferromagnetic phase at high temperatures. As shown in figure 4, in the vicinity of the 
multiphase point, ( ~ 3 ,  T )  = (-0.5, 0), the leaning of the F-M phase boundary towards small 
~3 results in the re-entrant transition (A + M + F + M -+ P) in -0.53 cc K )  c -0.5. 
In this section, the cause of the re-entrant phase transition is discussed by analytically 
calculating and comparing the free energies of the F, A (q = $) and M (q = i) phases. 

The free energy (equation (1 1)) can be divided into the internal energy U and the entropy 
S parts: 

F = U - T S  

l N  U = - - E h j ( S j )  
2N 

log[l+2exp(phJ)cosh(gh,)l- 

From equations (9) and (lo), (Sj) and (Sj) can be written as follows: 

(S,) = 1 - 8:"' 

(s;) = 1 - S y  

J 

where 

Around the multiphase point, it is easy to show Sj Sy) % SF) % exp(-ghj) for 
the [2-2] model and SJ = 87' x 8:) % exp[-@(h, + h;)] for the [34]  model. At low 
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temperatures, the free energy for both models can be represented as follows by using Sj 
defined above: 

1 T F = -- c(1 - 8,)hj - - c(Sj - Sj IOgSj). 
2N J N j  

(33) 

To compare the free energies for the three different phases, we denote 8, as SF in the F- 
phase, 8~ in the A-phase and 61 or 82 in the M (q = i )  phase since there exist two kinds 
of spin in this phase (figure 5) .  If we estimate the strength of hj (and h;) for each phase 
after some lengthy calculations we found 

(34) 

(35) 
In equation (33). therefore, all other Sj except for SZ and except for both 82 and 6~ can be 
neglected for the [2-21 and [ 3 4 ]  models, respectively. 

[Z-21 : 82 % exp(-4BJ1) >> 6~~ SA-  81 

[MI : 82 M 8F % exp(-fPJI) >> SA. 61. 

<s,> <s,> 
1 

I I I I I I I  
2 

2 Ferro 
m-0) -, 

Figure 5. The spin structures along the z-a~is  in the F. M (q = t )  and A (q = a )  phases 

In the vicinity of the multiphase point, K2(3) can be written as q3) = -0.5-A (A << I), 

[2-2] model 
and the free energy per spin in each phase are given by: 

( 3 6 ~ )  

(366) 

JI 

JI 

6 

FF % - ~ ( 5  - 2A) 

F M ~  - - (15+2A- 16S2)-~T(82-62log62) 

FA % -$(5 + 2A) 

[HI model 
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TIJ, 

I # , , , ,  
-0.05 01 0.05 A 

Figure 6. The magnetic phase diagram around the multiphase point. There exists an M.phase 
between the full lines for the [22] model and belween the broken lines for the [3-4] model. 
respectively. A is defined as = -0.5 - A .  

Comparing the free energies of each phase, the phase boundaries are determined as 

[2-21 model 

follows: 

(38) 
T T 

F M  : A % --az % -- exp(-4 JI / T )  
2 JI 2 JI 

[3-4] model 

Figure 6 shows the phase boundaries among three phases in the vicinity of the multiphase 
point. While the F-M phase boundary of the [2-Z1 model exists in the region of A c 0. 
that of the 23-41 model exists in the region of A > 0. Equations (38) and (40) suggest that 
this difference between the [Z-21 and 13-41 models is attributed to the enhancement of 8~ 
in the E3-41 model, which is neglected in the 12-21 model. In the [&2] model the entropy 
effect of 82 stabilizes the M-phase. In the [3-4] model. SF and 8, are of the same order. 
The thermal averages of only $ spins decrease by & in the M-phase (q = Q) while the 
thermal averages of all spins decrease by 8~ in the F-phase. Therefore, the entropy effect 
stabilized the F-phase. Comparing the role of hi and h;, it is understood that h; in the 
[3-4] model causes 8~ to be nearly equal with 82. The Hamittonian in the molecular field 
approximation (equation (6)) suggests that h; can be regarded as the effective field applied 
to Sj”. Since hj’ < 0 in the F-phase, hj’ stabilizes the F-phase with small Sg, that is, the 
F-phase including m&y spins with SF = 0 and having small (SF). Then. SF becomes large 
enough not to be neglected. Consequently, the three-site four-spin interaction has the same 
effect as the single ion anisotropy. DS,?(D > O), and the increase of the entropy in the 
Fphase by this effect results in the re-entrant phase transition in the [ 3 4 ]  model. 



Magnetic phase diagrams of the S = I A ” N l  model 2685 

5. conclusions 

We have studied the magnetic phase diagrams for both S = 1 [2-2] and S = I [MI models 
in three dimensions, based on the site-dependent molecular field approximation. The results 
in this paper complement the previous work by Monte Carlo simulation. 

To investigate the ordered phase, the coupled equations for spins up to N = 17 are 
self-consistently solved by means of the iteration. The stable spin structure is determined as 
the solution which minimizes free energy among the solutions of the coupled equation, and 
the magnetic phase diagrams are obtained for both models. For the [ 3 4 ]  model, the P-F 
and M-F phase transitions take place on the higher-temperature side and the P-M and M-A 
phase transitions take place on the lower temperature side compared with the [2-2] model. 
This result is qualitatively in agreement with that of the previous Monte Carlo simulation 
[15] and is athibuted to the temperature dependence of the self-spin correlation S,? included 
in the three-site four-spin interaction. While the phase diagram of the [2-2] model is similar 
to that of the usual S = f ANNNI model, the phase diagram of the [ 3 4 ]  model shows the 
reentrant phase transition for -0.53 < K )  < -0.50. 

The re-entrant phase transition is discussed by analytically calculating and comparing 
the free energies of ferromagnetic, modulated (q = b) and antiphase (q = i )  states in the 
vicinity of the multiphase point. It is confirmed that the threesite four-spin interaction has 
the same effect as the single ion anisotropy, DS,?(LJ > 0) ,  and the increase of the entropy 
in the ferromagnetic phase by this effect stabilizes the ferromagnetic phase and results in 
the re-entrant phase transition in the [3-4] model. 

A similar system with the higher-order spin interaction has been studied by Jensen et 
al [17]. Their Hamiltonian includes the term - K [ S f ( l  - Sf+,) + (1 - Sf)Sk,] in addition 
to equation (1). Due to this term, the combination of Si = 0 between two neighbouring 
ISi+j I = 1 terms is energetically favourable. This system shows a similar re-entrant phase 
transition to the [ 3 4 ]  model, which is due to the bulge of the ferromagnetic phase into the 
modulated region. The stabilization of the ferromagnetic phase at high temperatures may 
also be attributed to the entropy effect by the added term. 

In this paper, both the [2-21 and [34] models were restricted to the case of JO = 51. 
In the mean-field theory of the S = 4 three-dimensional ANNNI model, Yokoi studied 
the effect of the weakening of the intralayer interactions, Jo, and showed that there 
existed commensurate phases with disordered layers (partially disordered phase) and that 
commensurate phases, which lack the usual reflection or inversion symmetries, might be 
stabilized 1181. Recently, Nakanishi showed that in the ordinary S = $ ANNNI model 
neither the partially disordered phases nor the asymmetric phases are stabilized, and only 
the conventional ordered states are stable, by means of the modified mean field theory, 
which exactly treats the competing axial interactions [191. A Monte Carlo study by Rotthaus 
and Selke supports Nakanishi’s results [ZO]. For the S = 1 [Z-21 and [ 3 4 ]  models, the 
possibilities of the partially disordered phase and the asymmetric phase by the weakening 
of the intralayer interactions, Jo, are not investigated. It is known that the spin quantum 
number. S. largely affects the higher-order spin interactions compared with the ordinary 
bilinear interaction. The dependence of the magnetic phase diagram on the spin quantum 
number remains an interesting problem. 
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